Wind Resource Assessment

Matthew Little <u>matt@re-innovation.co.uk</u>

Renewable Energy Innovation

20-22/1/16

CEM Wind & Solar Training, Lilongwe, Malawi

- Wind Power
- Wind Energy
- Wind Speed and its characteristics
- Initial wind resource analysis
- Detailed site assessment
- Detailed wind resource analysis
- Estimating annual energy production

Wind is movement of air due to thermal effects causing pressure differences

Energy = **Power x Time**

So annual wind energy is average wind speed at the site x hours in year

Wind resource is highly variable and site specific

- The most useful factor to use to assess the wind resource at a particular site
- Usually given in m/s
- Monthly or yearly
- Cubic relationship between wind speed and energy generation
- An increase of wind speed from 6m/s to 7m/s gives a 58% increase in energy production.

Suitable Wind Speeds

			10 m ((33 ft)	30 m (1	64 ft)	
	Rating	Wind Power Class*	Wind Power Density (W/m²)	Speed ^(b) m/s (mph)	Wind Power Density (W/m²)	Speed ^(b) m/s (mph)	Δ
lly	Poor	1	0	0	0	0	
•	Marginal	2	100	4.4 (9.8)	160	5.1 (11.4)	
	Fair	3	150	5.1 (11.5)	240	5.8 (12.8)	
d for	Good	4	200	5.6 (12.5)	320	6.5 (14.6)	
	Excellent	5	250	6.0 (13.4)	400	7.0 (15.7)	
	Outstanding	6	300	6.4 (14.3)	480	7.4 (16.6)	
	Superb	7	400	7.0 (15.7)	640	8.2 (18.3)	

Generally annual average >4.5m/s is required fo SWT

Shape Parameter

Wind Model - Weibull Distribution at Mean Wind Speed of 7

CEM Wind & Solar Training, Lilongwe, Malawi

Wind Rose

Made with BREEZE MetView - www.breeze-software.com

Average Wind Speed: 2004

Figure 3 Annual Average Wind Shear at WCROC Site

 $v \approx v_{\text{ref}} \cdot \frac{\ln\left(\frac{z}{z_0}\right)}{\ln\left(\frac{z_{\text{ref}}}{z_0}\right)}$

- V = velocity to be calculated at height Z
- Z = height above ground level for velocity v
- V_{ref} = known velocity at height Z_{ref}
- Z_{ref} = reference height where v_{ref} is known
- Z_0 = roughness length in the current wind direction

Roughness Length

	Roughne	ss Classes	and Rough	ness Length Table
	Roughness Class	Roughness Length m	Energy Index (per cent)	Landscape Type
	0	0.0002	100	Water surface
Depends	0.5	0.0024	73	Completely open terrain with a smooth surface, e.g.concrete runways in airports, mowed grass, etc.
upon the	1	0.03	52	Open agricultural area without fences and hedgerows and very scattered buildings. Only softly rounded hills
topology	1.5	0.055	45	Agricultural land with some houses and 8 metre tall sheltering hedgerows with a distance of approx. 1250 metres
of the area	2	0.1	39	Agricultural land with some houses and 8 metre tall sheltering hedgerows with a distance of approx. 500 metres
	2.5	0.2	31	Agricultural land with many houses, shrubs and plants, or 8 metre tall sheltering hedgerows with a distance of approx. 250 metres
	3	0.4	24	Villages, small towns, agricultural land with many or tall sheltering hedgerows, forests and very rough and uneven terrain
	3.5	0.8	18	Larger cities with tall buildings
	4	1.6	13	Very large cities with tall buildings and skycrapers

20-22/1/16

CEM Wind & Solar Training, Lilongwe, Malawi

- Air density reduces at higher altitudes.
- This affects power in the wind

	Elevation (m)	Relative Performance 100%				
3	0 (sea level)					
•	600	94%				
	1,200	88% 85%				
	1,500					
	2,100	79%				
-	2,400	76%				
	2,700	73%				
	3,000	70%				

- Higher temperatures reduce the air density
- Higher temperatures reduce the power available
- Increased humidity reduces air density
- Higher humidity reduces the power available

- Cost of data-logging
- Local data hard/impossible to find
- Gaps in data
- Variation in topology
- Inaccuracy in data
- Data-logging time period

Use online resources and data as an initial check

- IRENA
 - http://irena.masdar.ac.ae/
- NASA
 - https://eosweb.larc.nasa.gov/sse/
- 3 TIER
 - http://www.vaisala.com/en/energy/support/Resources /Pages/Free-Wind-And-Solar-Resource-Maps.aspx
- NREL
- http://www.nrel.gov/wind/international_wind_resourc es.html CEM Wind & Solar Training, Lilongwe, Malawi 20-22/1/16

- Review any available reports/literature
- Check for other factors (access, grid infrastructure, protected areas etc).
- The desk-based research will give an indication of suitable areas for more investigation
- Can use GIS methods to review data

Do any areas look suitable?

- Found some suitable locations
- Arrange a site visit
- Good to have a previous relationship with the community

Anecdotal Evidence

- Discussion with the local community
- Interview a representative proportion
- Trying to get a fair view of weather conditions But...
- Be careful of general comments
- Be careful of over-enthusiastic assessment

Look for local signs of high wind speeds

- Perhaps hills or mountains funnel the wind?
- Are there local obstructions such as trees or houses close by?
- Can the prevailing wind direction be assessed?
- Is the site near the sea?
- How many meters above sea level is the site?
- What is the local terrain?
- Look for initial sites to place the wind turbine.
- Check land ownership issues.

- Monitor a site with data-logging equipment
- Need to take data for as long as possible
- Typically 6 months or more is best
- Ensure calibrated accurate monitoring equipment
- This can be an expensive task

Note: additional presentation on data-logging systems

Review Data

- Analyse data recorded
- Adjust for seasonal variation
- Adjust for inter-annual variation (if possible)
- Adjust for turbine hub height
- Find average wind speed
- Find wind speed probability distribution curve *We can then:*
- Find annual energy production

With an average wind speed estimate, we can perform some calculations about the **annual energy production** (AEP).

- Using manufacturers data and tables
- Power Curve Method
- Swept Area Method

- Use estimates from manufacturers
- Sales data sometimes over estimated or ideal data.
- Might not take into account shape factor

POWER CURVE

- Use a power curve and wind speed data
- Multiply together at each wind speed to give energy distribution graph
- Integrate area under energy distribution to find total energy

Energy = $1/2 \rho A v^3 *$ efficiency * time

- A = Swept area
- *ρ* = Air density (adjust for altitude)
- V = Annual average wind speed
- Use efficiency value of around 0.25
- Time is hours in a year = 8760 hours

- Accurate knowledge of wind resource is essential for assessing a site for SWT
- Small variations in wind speed can make a big difference to energy calculations
- Difficult to obtain accurate data
- Find as much data and information as possible

- Site is: Mchinji : 13°49' S 32°54' E
- Data collected:

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
?	?	4.6	4.3	3.7	?	?	?	?	?	?	?	}

• Data from NASA website:

Monthly Averaged Wind Speed At 10 m Above The Surface Of The Earth For Terrain Similar To Airports (m/s)

Lat - 13.49 Lon 32.54	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average	
10-year Average	3.26	3.18	3.41	3.31	3.31	3.61	3.91	4.23	4.76	4.84	4.58	3.68	3.84	inter i

- Need to find scale factor
- Then extrapolate data

- Then need to adjust for inter-annual variation:
- Data from previous years (from 10m height):

| May |
|------|------|------|------|------|------|---------|
| 2005 | 2007 | 2008 | 2009 | 2010 | 2011 | Average |
| 4.6 | 4.9 | 3.7 | 5.1 | 4.9 | 4.8 | 4.66 |

- I
- The data for May this year is 4.4m/s
- Calculate the adjustment factor for inter-annual variation.

