SWT Basics & Market Assessment for SWTs

Jon Sumanik-Leary jon.sumanikleary@gmail.com

Wind Empowerment Coordinator

Key learning objectives

- Understand the key social and technical aspects of electrification with Small Wind Turbines (SWTs)
 - Be able to list the critical success factors
- Be able to contribute to a market assessment for SWTs in Malawi

Outline

- SWT Basics
- Market Assessment for SWTS
 - Comparison of methodologies from Nicaragua and Ethiopia
 - Presentation & discussion on preliminary results from Malawi

SWT basics

Introduction

- SWTs are a third option for renewable rural electrification
 - PV simpler & more scalable
 - Hydro generally cheaper per unit of electricity

Advantages

- Potentially lower life cycle costs (\$/kWh) than solar PV on a good wind site (>5m/s).
- Hybrid systems can reduce dependence on battery storage and lower life cycle costs when resources are complementary.
- Life cycle costs spread more evenly over lifetime than solar PV.
- Can be manufactured locally.
- Easy for end-users to observe and spot problems before failures occur.

Disadvantages

- Highly unpredictable resource.
 - Larger battery bank than solar PV generally required if using SWTs alone.
 - Difficult to assess
 - High spatial variation
 - Significant power reductions with altitude
- Statistically rare extreme wind speeds can **destroy the turbine** and/or tower, **so long-term wind data collection** is needed for safe design.
- Poor reliability
 - Access to spare parts, tools & technical knowledge essential.
 - Remote sites can increase maintenance costs significantly.
- Difficult to transport
- Difficult to install
- Higher life cycle costs (\$/kWh) than hydro
- Highly vulnerable to **environmental hazards** (e.g. lightning strikes, humidity, heat, salinity, dust, sand)

Key terminology

- Power curve
- Rated power
- Cut-in speed
- Annual Energy Yield (AEY/AEO/AEP)
- RAEY
- Efficiency
 - many definitions, e.g.

Typical applications

- Wind/solar (+diesel) hybrids for battery charging
 - Household systems
 - 100W scale possible, but high unit costs as not as modular as PV
 - More complex than SHS
 - Fewer good wind sites than good solar sites
 - Productive applications
 - Agriculture (irrigation, agricultural processing equipment)
 - Small businesses (power tools, fridges/freezers),
 - Community mini-grids
 - Multiple households
 - Community services (lighting and computers for schools, health centres etc.)
 - Productive applications

Supility Energy Main

Local manufacture vs importation

- Local manufacture
 - Local jobs
 - Stronger supply chain
 - Reinvesting money in local economies
 - Lower upfront cost
 - Participatory manufacture
- Importation
 - Reliability
 - International shipping & import taxes

Value chain analysis

• Where is the money spent?

• In Ethiopia:

Wind/solar hybrids

- Compatibility of resources different in each place
 - Nicaragua
 - Scotland

Energy yield & power performance (Matt)

- PαV³
 - Doubling the wind speed generates EIGHT times more power

Energy yield & power performance (Matt)

- Actual energy yield very difficult to predict
 - Every SWT different, especially if locally manufactured Furling system
 - Accuracy of blade geometry
 - Cable length & diameter
 - Tower height
 - Voltage
 - Furling system

• Khennas, Dunnett et al. (2008): "the best approach may be to make an informed guess and then refine this in light of practical experience."

Energy yield & power performance (Matt)

- Actual energy yield very difficult to predict
 - Every site different
 - Obstructions (turbulence & shelter)
 - Seasonal & inter-annual variation in wind resource
 - Air density changes due to altitude
 - Local topography
- Khennas, Dunnett et al. (2008): "the best approach may be to make an informed guess and then refine this in light of practical experience."

- Taller = better wind resource, lower turbulence
- Shorter = cheaper, easier to install/maintain
- Typically 6m (open areas w. good wind resource) to 30m (many trees/buildings & poor wind resource)

Economics

- Key factors:
 - Rotor diameter.
 - Wind resource.
 - Where & how it is manufactured/ass embled/installed.
 - How it is maintained
 - End-user training
 - Distance to service centre
 - Environmental hazards

VAWTs, roof mounting & shrouded turbines

CEM Wind & Solar Training, Lilongwe, Malawi

Site selection and installation

- Site selection (MATT)
- Transportation
- Foundations
- Electrical installation
- Assembly

Anchor

point 1

Ancho

point 1

Anchor

point 3

Anchor

point 3

Operation & maintenance

Failures are inevitable!

- Frequency of failures
 - Manufacturing quality
 - Environmental hazards
 - Preventative
 maintenance
- Downtime
 - -> Access to maintenance services essential
 - Service networks
 - Community technicians
 - Capable AND motivated

Operation & maintenance

- Maintenance costs highly variable
- Opportunity to create jobs in rural areas
- Spreads cost of system out over lifetime
 - Users MUST be aware of maintenance requirements from the beginning

Safety

- Magnets
- Lightning
- Carrying heavy components
- Raising/lowering tower
 - Do not climb (without a harness)
 - Electrical brake
 - 'Drop zone'

Comming 13

Market Assessment for SWTs

North States and State

What happens if you don't do a market assessment?

- Sustainability of SWT initiatives much more dependent on context than solar PV
 - => MA much more important, as it matches products/services (RETs) with people who might need them, taking into account a range of contextual factors

- Enabling environment
 - Environment
 - High wind resource (>4m/s monthly average throughout the year) in the regions where most people lack access to electricity.
 - Lack of <u>environmental hazards</u> (low frequency of dangerously high winds and lightning strikes and cool, inert environment to prevent corrosion, overheating or contamination with dust/sand).
 - * Solar or hydro resources that peak in the opposite season to the wind resource and cannot provide sufficient power generation throughout the year.
 - * Flat plains with no trees or other obstructions (to cause turbulence, reduce wind speeds and necessitate individual site assessment).
 - Wind resource that peaks in the <u>same season as traditional productive</u> <u>activities</u>, e.g. dry season for farmers in need of irrigation.
 - High air density (<u>cold, low altitude</u>) for maximum power extraction and cooling of the generator.

Enabling environment

- Finance
 - If insufficient access to capital, the potential for establishing <u>energy based enterprises</u> should be high and/or <u>innovative</u> <u>financing models</u> such as pay-as-you-go energy metering should be available.

Targeted subsidies for providing maintenance services or wind resource assessment can be effective.

- Enabling environment
 - Capacity
 - * High level of <u>awareness</u> of SWTs and understanding of the <u>technical advantages and disadvantages</u>.
 - Freely available high quality wind maps (validated with anemometry in the areas where SWTs are most viable, of high resolution and relevant to low hub heights).

Enabling environment

- Policy
 - A realistic evaluation of the <u>national potential</u> for SWTs and a plan for <u>how to achieve this potential</u>, which forms part of <u>national</u> <u>rural electrification strategy</u>.
 - In <u>complex terrain, individual wind studies</u> should be supported for each new location.
 - * <u>Strong and consistent institutional support</u> to foster the development of a strong SWT ecosystem, in particular the social infrastructure required for maintenance.
 - Product <u>quality standards</u> that ensure consumer confidence, but don't unnecessarily hinder manufacturers.
 - Government endorsement to build trust in SWTs.
 - <u>Tax exemptions for imported SWTs</u>, wind pumps, power electronics and batteries.
 - Favourable feed-in tariff to encourage grid-tied SWTs.

- Supporting services
 - * Good transportation infrastructure that facilitates <u>easy access to</u> <u>installation sites</u>.
 - * <u>Consumer and industry associations</u> that share knowledge between SWT market actors and give them a voice in the policy arena.
 - <u>Universities</u> that are willing to collaborate with SWT market actors in specific research projects, as well as offering wind power related <u>training</u>.
 - Utility-scale wind farm developers willing to support SWT market actors with funds and experience.
 - <u>Grid electricity</u> available in a nearby town/city (if manufacturing centrally).

- Market actors
 - * A variety of <u>training and demonstration centres</u> that can raise awareness of SWTs and empower community technicians/end-users.
 - * A <u>network of service centres</u> capable of bridging the gap between the supplier/manufacturer and the community by offering <u>technical</u> <u>support for SWTs at a local level</u>.
 - A <u>variety of construction material suppliers</u> offering products relevant to SWTs (if manufacturing locally).
 - A <u>variety of SWT manufacturers</u> offering a range of products that are <u>well</u> <u>matched to local needs</u>.
 - A <u>variety of SWT suppliers</u> with <u>regional branches in all areas where SWTs</u> <u>are viable</u>, offering support for site selection and system design, as well as installation.

Community

- * High level of technical knowledge available at a local level.
- * Highly motivated individuals to take on the role of community technician.
- End-users with <u>sufficient capital</u> to pay for <u>O&M costs</u> or a willingness to use the electricity to generate sufficient revenue.
- End-users that are willing to <u>adapt their behaviour</u> around the <u>availability of</u> <u>the wind resource</u>.

Methodology

Decision support tree

 Preliminary analysis for high level decision makers

Key stages

- STAGE I: Learning from existing initiatives
- STAGE II: Quantifying the market potential
- STAGE III: Mapping the local energy access ecosystem and identifying the key barriers

STAGE I

- Learning from existing initiatives
 - Nicaragua
 - blueEnergy on the Caribbean coast (Neves et al, 2015)
 - Pilot project Cuajinicuil
 - PV suppliers experience with SWTs
 - Ethiopia
 - MercyCorps PV projects
 - Malawi
 - CEM PV projects
 - GoM SWT projects
 - Students for Malawi SWT projects

STAGE II

- Quantifying the market potential
 - Nicaragua
 - Delivery model: community micro-grid
 - Output:
 - Location of most viable regions
 - Quantification of potential market
 - Ethiopia
 - Delivery model: small commercial centre
 - Output:
 - Location of most viable regions
 - Malawi
 - Delivery model: ?
 - Output:
 - Location of most viable regions
 - Quantification of potential market

STAGE II Data collection

	Nicaragua		Ethiopia	
Factor	Data collected	Data sources	Data collected	Data sources
Component costs	 Cost breakdowns for LMSWT materials & manufacturing, energy system components, installation & O&M. 	 Actual costs from Cuajinicuil pilot project Quotes from Nicaraguan & overseas RE suppliers 	Cost breakdowns for LMSWT materials & manufacturing, energy system components, installation & O&M.	 Actual costs from Semera & Jijiga pilot projects Quotes from Ethiopian RE suppliers
Scale	 Modelling 100W, 1kW and 10kW energy systems 	As above	• N/a	
Place of manufacture	 Comparison of local manufactured SWTs with imported 	As above	 Only locally manufactured SWTs & imported PV 	As above
Population size	 Population per municipality 	 National census (INIDE 2005) 	 Population per municipality 	IRENA Global RE Atlas
20-22/1/16	CEM Wi	nd & Solar Training, L	ilongwe, Malawi	48

STAGE II Data collection

	Nicaragua		Ethiopia	
Factor	Data collected	Data sources	Data collected	Data sources
Renewable	 Map of existing 	• MEM	Hydro resource map	Various datasets
resources	hydroelectric installations and sites with proven resource • Solar resource map • Wind resource maps • In situ wind resource measurements (secondary data)	 ENCO UNEP/SWER A UNI UCA blueEnergy 	 Solar resource map Wind resource maps Land use map (obstructions for wind flow) Altitude (air density) In situ wind resource measurements at pilot sites (primary data) 	from IRENA Global RE Atlas Datalogging in Jijiga & Semera
Existing transportation infrastructure	 Population density per municipality Actual journey costs for remote/near sites Locations of existing service centres 	 National census (INIDE 2005) Interviews 	 Population density map Actual journey costs for remote/near sites 	 IRENA Global RE Atlas Interviews

STAGE II Data collection

Nicaragua		Ethiopia		
Factor	Data collected	Data source s	Data collected	Data source s
Energy access	 Map of existing national grid and diesel mini-grid infrastructure % with grid access per municipality 	• ENEL National census (INIDE 2005)	Map of existing national grid infrastructure	IRENA Global RE Atlas
Protected areas	N/a	B Carl Bunging	Protected areas map	IRENA Global RE Atlas
Civil unrest	N/a	GAL .	Overseas travel advisory	FCO
Ability & willingness to pay	 % living in extreme poverty per municipality Baseline household expenditures on energy in Cuajinicuil 	National census (INIDE 2005) Cuajinicuil project reports	Baseline household expenditures on energy at pilot sites	Household surveys in Jijiga & Semera

Nicaragua

Factor	Data processing techniques	Software	Key output variable
Energy access	Data taken directly from census	ExcelArcGIS	% population without access to electricity in each municipality
Scale	Comparable energy systems models constructed for 100W, 1kW & 10kW scales	ExcelHOMER	LGC for different scales
Place of manufacture	Comparable energy systems models constructed for locally manufactured and imported SWTs	ExcelHOMER	LGC for locally manufactured & imported SWTs
Existing transportation infrastructure	Categorise each municipality into poor, average or good access based upon population density, then calculate resource assessment, installation & maintenance costs for each category	Excel ArcGIS	LGC for different levels of access
Renewable resources	Calculate average resource available in each municipality	ExcelArcGIS	Average renewable resource available in each municipality
Ability to pay	Data taken directly from census	ExcelArcGIS	% population living in extreme poverty in each municipality
Population size	Data taken directly from census	ExcelArcGIS	Population in each municipality

STAGE II Data analysis

• 2 Stage LGC/ GIS Filter

STAGE II Data analysis

STAGE III

- Mapping the local energy access ecosystem and identifying the key barriers
 - Nicaragua
 - Expert interviews
 - Ethiopia
 - N/a
 - Malawi
 - Expert interviews

Results

- Nicaragua
 - Small market for SWTs exists, but most viable region already predominantly grid connected.
 Solar PV scalable across entire country.
- Ethiopia
 - Market size not quantified, but potential for wind/solar/diesel hybrids in southeast of the Somali region. Solar PV scalable across entire country.
- Malawi

Key messages

- SWTs more challenging to implement than PV...
 - ...but if well supported, can create more jobs, build more local capacity & feed more money back into the local economy than PV.
- PV much more scalable (especially in Malawi)
- Market assessment essential precursor for sustainable implementation of SWTs
- Key factors for decision making:
 - Wind resource
 - Spatial variation
 - Critical mass for service centre
 - Solar/wind resource compatibility
 - Value placed on local job creation