Data Logging

Matthew Little <u>matt@re-innovation.co.uk</u>

Renewable Energy Innovation

CEM Wind & Solar Training, Lilongwe, Malawi

- What is a data-logger?
- Why is data important?
- Sensors to measure resource
- How to analyse the data

This will be a hands-on practical session

- Renewable energy resources are variable and location specific
- Knowing the real local resource ensures more accurate system design
- Use sensors and a data-logging system to record local data

- Irradiance (solar resource)
- Wind speed
- Wind direction
- Temperature
- Humidity
- Load

All measured with a time stamp

 Wind resource is highly variable and site specific

- Here we are going to cover sensors for measuring renewable energy resources
- Focussing on wind resource
- Many different types and manufacturers
- Usually a compromise between cost and accuracy
- Need to ensure accurate, known calibration

- Cup Anemometer
- Rotates with wind speed
- Output is a signal with a frequency which varies with wind speed

Wind Speed

- Ultrasonic anemometer
- No moving parts

XExpensive

Also gives wind direction

- Large tail ensures tip faces the wind
- Output gives a signal depending upon direction

- Measures the solar irradiance
- Lots of different sensor types

Including: PV cell, photo diode, photo resistor and optical methods

Temperature compensation

Calibration Factors

- Every sensor has some form of calibration factor
- This converts the output data into a physical reading
- These need to be known for every sensor
- Sometimes variation between sensors
- Accuracy depends upon application

To monitor wind speed the data logger must be able to:

- Record wind speed
- Record wind direction
- Record irradiance (for hybrid system compatibility)
- Must be robust and reliable
- Weather-proof
- Low cost

Many different data-logging systems Including:

- Power predictor
 - <u>http://www2.powerpredictor.com/</u>
- Hobo Data Loggers
 - http://www.onsetcomp.com/
- Space Logger
 - <u>http://www.r-p-r.co.uk/spacelogger/w10.php?gclid=CKnG4-uDr8oCFQ2eGwodeG8MoQ</u>

We are using the Wind Logger from <u>www.RE-Innovation.co.uk</u>

CEM Wind & Solar Training, Lilongwe, Malawi

- Tall mast
- Potential to fall down
 - High winds, rope breaking
- Ensure area is fenced/roped off
 - Drop zone is height of mast in all directions
- Signs
 - Warning diagram
 - Written in local language

- Mount on top of mast
- Or use booms from mast
- Ensure no obstructions
- Ensure tower shadow is not from prevailing wind direction
- Ensure sensors are separated

- Install horizontally
- Use a spirit level
- Ensure no shading (if possible)
- Note any potential shading issues

Record site information in a log sheet

- Date/Time
- Location
- Installer
- Sensor details
- Contact details
- Sample Installation log available

- Check data-logger weekly (Local operative)
 - Check sensors working
 - Check unit secure
 - Check no water ingress
 - Check battery voltage (if possible)
- Ensure a log-book is kept

Site Visit Checklist

- For monthly site visits
- Record site visit on a check list
 - Date/Time
 - Location
 - Check sensors
 - Check batteries
 - Download data
 - Check data
- Sample checklist available

Battery Replacement

Takes 3 x D cells Battery lifetime: 3-6 months

- Remove SD Card from unit
- Use SD reader to read data to a computer
- 1-32Gb SD cards can be

used

- Data stored as .csv file
- 1 file per day

Ref	Date	Time	Wind 1	Wind 2	Direction	Irradiance Wm-2	Batt V
BB	13/01/2016	11:19:47	0	0	E	38	4.59
BB	13/01/2016	11:20:47	0	0	E	38	4.59
BB	13/01/2016	11:21:47	0	0	E	38	4.57
BB	13/01/2016	11:22:47	2	0	Ν	38	4.57
BB	13/01/2016	11:23:47	3	0	NW	41	4.57
BB	13/01/2016	11:24:47	15	0	NW	41	4.57
BB	13/01/2016	11:25:47	43	0	W	41	4.57
BB	13/01/2016	11:26:47	3	0	Ν	41	4.57
BB	13/01/2016	11:27:47	0	0	Ν	38	4.57
BB	13/01/2016	11.28.47	12	0	W	38	4 57

- Data can be read using spreadsheet
- Using some processing we can convert the data into wind speed probabilities
- We can also process the data to create wind rose diagrams
- Use Python scripts
- This is a work in progress

Quality Assurance

- Need to ensure that we are confident about the data we have collected.
- Good installation logs
- Good site visit logs
- Calibration records for sensors
- Ensure data is not corrupted
- Remove any spurious data

- Parameters to monitor
- Sensors available
- Data-logging equipment
- Operation and Maintenance of equipment
- Data analysis
- Quality assurance

